Monday, July 17, 2017

Tropical Storm Don (2017)

Storm Active: July 17-18

A mid-July tropical wave crossed westward from the coast of Africa to more than half-way across the tropical Atlantic without generating much thunderstorm activity. However, on July 16, the system began to organize, despite the proximity of dry air. A low pressure center formed shortly afterward, even as convection remained quite limited. During the afternoon of July 17, a curved band developed about the center and the circulation became better-defined. As a result, the low was upgraded to Tropical Storm Don about 500 miles east of the Windward Islands.

Over the next day, Don moved quickly toward the west. It strengthened briefly as a central dense overcast appeared, but increasing shear reversed this slight intensification as quickly as it had occurred. By midday on July 18, Don's disorganized thunderstorm activity was moving over the Windward Islands. That evening, before the system passed over the islands, Don lost its circulation center in the face of strong shear and dissipated. Scattered gale force winds and heavy rain did continue, however, as its remnants entered the Caribbean.

Tropical Storm Don was only a small cyclone for its brief existence, forming as it did on the edge of a dry air mass with limited moisture supply.

Don existed for less than two days before succumbing to high wind shear as it entered the Caribbean Sea.

Thursday, July 6, 2017

Tropical Depression Four (2017)

Storm Active: July 5-7

At the beginning of July, a tropical wave located southwest of the Cape Verde Islands began to organize. The system was moving rather slowly for its latitude over the next several days, allowing it to began circulating more easily than it otherwise would. Slowing development, however, was its interaction with the intertropical convergence zone (ITCZ). Even though this interaction generated a great deal of convection, the disturbance needed to separate from the ITCZ to initiate development. On July 4, the system began to veer toward the west-northwest and gain some latitude. The next day, it acquired a circular area of strong thunderstorms near its center and became Tropical Depression Four over the open tropical Atlantic.

Shortly afterward, however, the system began to feel the effects of a Saharan dry air encroaching from the north and east. On July 6, the depression continued to the west-northwest, but its thunderstorm activity slowly declined as it entrained dry air. In addition, the cyclone increased in forward speed, making it difficult for the circulation to persist. It did not persist long, in fact: the system lost a closed circulation and dissipated during the afternoon of July 7, far from any land.

The above image shows Tropical Depression Four over the open Atlantic.

The short-lived tropical depression fell victim to a large dry air mass quickly after formation.

Tuesday, June 20, 2017

Tropical Storm Cindy (2017)

Storm Active: June 20-22

On June 16, a large trough of low pressure formed over the western Caribbean Sea and the neighboring regions of central America. Heavy rainfall fell over adjacent landmasses as the system organized just east of the coast of Belize and moved slowly northward. By late on June 18, a huge north-south area of convection lay just to the east of the center of the disturbance, but it was still not organized enough to be considered a tropical cyclone. When it moved over the Gulf of Mexico shortly afterward, the open waters stimulated further development: finally, on June 20, it developed into Tropical Storm Cindy.

From its formation onward, Cindy did not look particularly like a tropical storm. The center remained largely devoid of convection, with several low-cloud swirls competing for dominance. Heavy rain was falling, but well away from the center in the northern semicircle. Much of this precipitation was already falling over land, from eastern Texas to the Florida panhandle. Cindy moved slowly toward the northwest as a medium-strength tropical storm through that night and June 21. Unfavorable wind shear prevented the storm from intensifying further. Early the next morning, Cindy made landfall near the border of Louisiana and Texas. After landfall, it quickly weakened to a tropical depression. The remnants of Cindy continued to bring rain over the U.S. as it traveled northeastward at a progressively faster clip over the following days.

Tropical Storm Cindy was a rather asymmetrical system with little to no convection near the center of circulation.

Cindy existed as a tropical cyclone only briefly in the Gulf of Mexico before making landfall.

Tropical Storm Bret (2017)

Storm Active: June 19-20

On June 13, a tropical wave formed just off the Atlantic coast of Africa and began rapidly moving toward the west. From the beginning, the system was located at a very low latitude, but was quite vigorous in its production of thunderstorm activity. Conditions were favorable for development in the low-latitude tropical Atlantic, and organization proceeded slowly over the next several days. By June 18, the wave had developed a broad circulation, but was having difficulty acquiring a well-defined center due to its rapid westward motion. The next day, a closed center was found; since gale force winds were already occurring north of the center, it was classified Tropical Storm Bret. At the time, it was centered just east of coastal Venezuela moving toward the west at a blustering 30 mph.

Early on June 20, the center of Bret crossed extreme northern Venezuela and moved into the much more hostile environment of the eastern Caribbean, where wind shear was quite high. The system's circulation, never well established, did not long survive these conditions, and Bret dissipated that same afternoon. Bret was the first known system to develop so early in the season within the low-latitude tropical Atlantic east of the Caribbean. It was also the lowest-latitude Atlantic tropical system in June since 1933.

The above image shows Tropical Storm Bret near the island of Trinidad.

Though short-lived, Bret was an unusual tropical storm. It was one of a rare class of tropical cyclones to make landfall in South America.

Monday, May 15, 2017

Professor Quibb's Picks – 2017

My personal prediction for the 2017 North Atlantic Hurricane season (written May 15, 2017) is as follows:

15 cyclones attaining tropical depression status*,
15 cyclones attaining tropical storm status*,
6 cyclones attaining hurricane status, and
3 cyclones attaining major hurricane status.
*Note: Tropical Storm Arlene formed on April 19, long before the official start of the season on June 1 and before I made these predictions.

This prediction calls for a nearly average Atlantic hurricane season, with predictions slightly exceeding historical averages in all categories.

In contrast to 2016, the conditions for the 2017 season are fairly common and uncertainty is relatively low. The first condition taken into account is the state of the El Niño Southern Oscillation Index (or ENSO index), a measure of sea surface temperature anomalies in the Pacific Ocean that has a tendency to affect Atlantic hurricane activity. After the index took a brief dip into negative territory this past winter, the index has returned to nearly zero, or "neutral." As shown in the figure below from the International Research Institute for Climate and Society, a modest increase is expected over the coming months.

As a result, the conditions prevailing for the hurricane season are likely to be neutral or weakly El Niño. Since El Niño tends to suppress Atlantic activity and cause cyclones to, on average, take more easterly tracks, this factor would suggest a quieter hurricane season.

Sea surface temperatures, meanwhile, are a bit above average across the Atlantic basin, but the anomalies are not as great in magnitude as they have been over the past few years. The warmest areas are currently the Caribbean and the tropical portion of the Atlantic farther east. Parts of the Gulf of Mexico, meanwhile, are slightly cooler than average. Further warming of the current higher-than-normal areas is likely over the next few months, so these might be conducive to cyclonogensis. The tropical Atlantic has also been quite moist, as has the Caribbean, supporting the development of hurricanes. The Gulf of Mexico, in contrast, has been persistently dry. Finally, with the developing El Niño, increasing wind shear is likely across the Atlantic, especially at higher latitudes and near the United States. Such shear is hostile to tropical systems, so I predict limited activity near the U.S. east coast, despite a pocket of warm water there.

My estimated risks for different parts of the Atlantic basin are as follows (with 1 indicating very low risk, 5 very high, and 3 average):

U.S. East Coast: 3
The presence of an El Niño would tend to reduce risk, as stated above. However, seasonal forecasts indicate that high temperatures will prevail near the coast for most of the summer, resulting in higher oceanic heat content. Look for quick forming and quick hitting systems - long-lived hurricanes are likely to miss the coast this year.

Yucatan Peninsula and Central America: 3
Signs in the adjacent Caribbean Sea point to elevated tropical activity this year: warm waters, moist air, and limited wind shear. However, steering ridges will have a difficult time setting up along the Caribbean Islands to the north, preventing developing storms from tracking due westward for the most part and instead allowing them to gain latitude. A combination of these two opposing factors leads to the "average" designation for this region.

Caribbean Islands: 4
Complementing the previous point, the Caribbean Islands will be in the more likely path of tropical cyclones. Coupled with the fact that the tropical Atlantic is warm, there is significant risk for landfalling tropical storms and hurricanes this year.

Gulf of Mexico: 1
Atmospheric conditions about the Gulf are already dry and strong upper-level winds are moving across the region. With an increasing ENSO index, this state of affairs is likely to continue indefinitely. Combined with the slightly cooler waters, these signs indicate a very low risk for the Gulf coast.

Overall, the 2017 season is expected to be near or just slightly above average, but with a lower than average risk to landmasses (most storms should curve out to sea). While the confidence in this forecast is somewhat higher than last year, everyone in hurricane-prone areas should still take due precautions as hurricane season approaches. Dangerous storms may still occur in quiet seasons. Sources:,

Saturday, May 13, 2017

Tropical Storm Arlene (2017)

Storm Active: April 19-21

During mid-April, a non-tropical low over the central Atlantic well east of Bermuda was producing a large area of tropical storm force winds and scattered thunderstorm activity. As the system drifted eastward, it more more organized, and began to show signs of subtropical development by April 18. Though convection remained mainly confined to the southeast quadrant by the next morning, the low had acquired enough organization to be classified Subtropical Depression One. At that time, the cyclone was moving north-northeast at a moderate clip as it interacted with an extratropical low.

Any cover the center of circulation had managed to develop that day was quickly stripped away by increasing wind shear by early on April 20. The system made a comeback later that morning, however, and in fact became more symmetric, resulting in its reclassification as a tropical depression. It turned toward west-northwest that afternoon and unexpectedly strengthened into Tropical Storm Arlene, only the second known tropical storm to form in April in the Atlantic. Further, its central pressure dropped to 993 mb, the lowest for a tropical system ever recorded in the month of April. Arlene's unusual run ended the next day as it became extratropical and was quickly absorbed by a larger system.

The above image shows Tropical Storm Arlene near its peak intensity over the open Atlantic.

Arlene did not approach any landmasses during its short lifetime. However, it was notable in that it was only the second Atlantic tropical storm known to form in April, after Ana in 2003.

Friday, May 12, 2017

Hurricane Names List – 2017

The name list for tropical cyclones forming the North Atlantic basin for the year 2017 is as follows:


This list is the same as used in the 2011 season, with the exception of Irma, which replaced the retired name Irene.

Sunday, April 16, 2017


OSIRIS-REx is a NASA sample return mission to the near-Earth asteroid 101955 Bennu. It aims to collect a sample from an asteroid whose composition could reveal a great deal about the beginning of the Solar System and the formation and evolution of the Earth. The first asteroid sample return mission was Hayabusa, developed by the Japanese Aerospace Exploration Agency (JAXA). This probe returned about 1,500 microscopic grains from the asteroid 25143 Itokawa. OSIRIS-REx, however, was designed to obtain at least 60 grams of material in the form of macroscopic samples. In addition, Bennu differs enormously from Itokawa in that it is carbonaceous while the latter is siliceous. Further, there is evidence that it is rich in organic and volatile compounds. Bennu is also of interest because its orbit takes it very close to Earth. It was measured to have a small cumulative probability of 0.037% of striking the Earth sometime in the 22nd century. This is due to the present uncertainty as to whether Bennu with pass through a gravitational "keyhole" in its 2135 flyby of Earth that would set it on a collision course. This mission will allow more precise predictions of its trajectory.

Bennu's orbit is slightly larger than Earth's but also more elliptical. As a result, it crosses inside Earth's orbit with every revolution.

The spacecrafts's name stands for Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer. This unwieldy acronym contains the four main goals of the mission: to return a sample to Earth that will elucidate the Solar System's origins, to map the asteroid with spectroscopy to learn about its composition and formation, to investigate whether near-Earth asteroids such as Bennu could provide materials as resources for human development, and to discover what impact threat Bennu poses, if any. The word "regolith" describes the layer of loose material at the surface of an asteroid, from which OSIRIS-REx will obtain a sample.

On September 8, 2016, the OSIRIS-REx mission began with a launch from Cape Canaveral. After arriving at Bennu in 2018, it will map the surface to select a target for the 2019 sample acquisition. After leaving the asteroid in 2021, the spacecraft will then return the sample to Earth in 2023.


Sunday, March 26, 2017

More Evidence for Planet Nine

For the first post in this series, which explains the motivation for the Planet Nine hypothesis, click here.

The previous post touched on some ways in which the orbits of certain outer Solar System objects are similar. These may be quickly summarized in the following way: both the arguments and longitudes of the objects' perihelia are unusually clustered around certain values.

The above image shows numerous relevant parameters concerning the position of an orbit. In the case of orbits in the Solar System, the plane of reference is the plane of the Earth's orbit and the Sun, also known as the ecliptic. The reference direction often used for heliocentric objects is called the First Point of Aries, defined as the position of Earth's vernal equinox and so named for its location within the constellation Aries. The ones with which we are concerned here are the argument of periapsis ω (this is the general name for argument of perihelion to include non-heliocentric objects) and the longitude of the ascending node Ω. The sum of these two angles is called the longitude of perihelion because it measures the angle between the perihelion and the reference direction. In summary, the similarity in the arguments of perihelion indicates that the members of the relevant population of objects have similar orientations with respect to the plane of the Solar System, while the similarity in the longitudes indicates a clustering of these orbits in space.

A 2016 paper by Konstantin Batygin and Michael E. Brown ran a statistical analysis of these parameters for the six most extreme known trans-Neptunian (beyond Neptune) objects. Since they were discovered by a number of distinct observational surveys, the possibility of observational bias was dismissed. The analysis found that the clustering of the objects had only a 0.007% probability of occurring by chance. This suggested that another explanation was in fact required for the phenomenon. Further simulations suggested that a Planet Nine could account for the observations, provided that it have the required heft: at least around 10 Earth masses (or, equivalently, 5000 Pluto masses). In comparison, all the previously known trans-Neptunian objects put together weighed much less than a single Earth mass.

Shortly afterward, more evidence for Planet Nine was discovered, using data from a surprising source: the Cassini space probe. Launched in 1997, this Saturn orbiter allowed the calculation of the position of Saturn over time to unprecedented precision. These were compared to an extremely precise gravitational model of the Solar System known as INPOP, which accounts for the gravitational influence of the Sun, the planets, and many asteroids. The model then outputs planetary ephemerides, namely positions of the planets at given times. A paper published in February 2016 by Agnès Fienga et al. experimented with adding a Planet Nine at different positions to the INPOP. If the residuals (differences in Saturn's position between the predictions of INPOP and the real measurements from Cassini) are increased, this rules out the existence of Planet Nine in this position. However, if they are decreased, then this is evidence in support of Planet Nine, since it would partially explain the observed discrepancy.

The results of the paper are summarized in the diagram above. They showed that Planet Nine of 10 Earth masses and a semi-major axis of 700 AU was ruled out by Cassini's data to be in the red zones (this increased the residuals). The pink zones correspond to areas that would be ruled out by further inclusion of Cassini's data (the paper only used the measurements through 2014). The green zone, however, is where a Planet Nine would decrease residuals, making the INPOP model a more accurate picture of the Solar System. Therefore, the paper found this to be the most likely zone to find Planet Nine (with the single most likely position indicated). The addition of a Planet Nine in the farther regions of its orbit would not produce significant perturbations, and thus this is labeled "uncertainty zone".

Further analysis fine-tuned the estimates of mass, eccentricity, semi-major axis, and other parameters for the supposed Planet Nine. With an array of increasingly large telescopes at their disposal, astronomers will soon be able to settle the Planet Nine hypothesis one way or the other, bringing new insight into the current structure and the formation of our Solar System.


Sunday, March 5, 2017

The Planet Nine Hypothesis

Beginning in the 1990s, advances in astronomy allowed the detection of many extrasolar planets, adding thousands of the number known within two decades. However, apart from the reclassification of Pluto as a dwarf planet in 2006, the population of true planets in our Solar System did not change. Many, many other smaller objects were discovered, though.

Many of these smaller objects lay within the asteroid belt between Mars and Jupiter, or in the Kuiper Belt, just beyond Neptune's orbit. Eris, Haumea, and Makemake are other dwarf planets whose perihelia (closest approaches to the Sun) bring them within the Kuiper Belt, 30 to 50 astronomical units (AU) from the Sun. However, an unusual object was discovered in 2003 whose orbital properties were quite different.

The object was later named Sedna and measures a little less than half the diameter of Pluto. Though the best images of it by telescopes are only a few pixels wide, it is clearly of a reddish color, nearly as red as Mars. The perihelion of this object was, at the time, the largest known in the Solar System, at 76 AU. However, it also has an extremely elongated orbit, bringing it to an aphelion (farthest point) of 936 AU! This orbit is shown in red above, compared to the orbits of the outer planets and Pluto (in pink). About a decade later, another object, provisionally designated 2012 VP113, was discovered with comparable orbital parameters, except with a slightly farther perihelion of 80 AU and an aphelion of 438 AU. The scarcity of known objects of this type is not only a consequence of their distance, however.

This scatterplot, published in a paper by astronomers Chadwick A. Trujillo and Scott S. Shephard, shows the perihelia and eccentricities (a measure of the "elongatedness" of an elliptical orbit; a perfect circle has an eccentricity of 0) of various objects outside Neptune's orbit. Curiously, there is a clear drop-off at around 50 AU, with only a few known objects beyond. Notably, there is also a gap between 55 and 75 AU. This gap is not only an artifact of our telescopes being insufficiently powerful: Sedna and 2012 VP113 were detected farther out, so if there were objects in this gap they should have been easier to find. The high eccentricity of Sedna and 2012 VP113, as well as the existence of this gap, aroused suspicion that a massive object may have gravitationally perturbed the trajectories of objects in this region, illustrated in the image below.

The same paper indicated another unusual feature of the population of these farthest known objects.

The horizontal direction indicates the semi-major axis of each object (yet another measure of the size of an orbit; however, it is closely related to the two discussed previously: it is simply the average of the perihelion and the aphelion). The vertical variable on the scatterplot is the argument of perihelion, which is simply the angular position around the orbit of the orbit's perihelion (relative to where it crosses the plane of the Solar System). All known objects whose semi-major axes exceed 150 AU have arguments of perihelion all clustered roughly around 0°. In the eight-planet Solar System model, this should not be the case: gravitational perturbations from the gas giants would randomize the arguments of perihelion over millions of years. However, a large planetary body orbiting well beyond the known planets could constrain the arguments of perihelion. This led to the hypothesis of a new planet, nicknamed Planet Nine.

The above image shows the orbits of many of the same objects represented by dots to the right of the black line in the scatterplot. Note how in addition to the clustering trend noted above, the perihelia are also all on the same side of the Sun. The figure also shows where Planet Nine would possibly orbit given the positioning of those objects. The story of the Planet Nine hypothesis continues in the next post.